Using attribute value lattice to find closed frequent itemsets
نویسندگان
چکیده
Finding all closed frequent itemsets is a key step of association rule mining since the non-redundant association rule can be inferred from all the closed frequent itemsets. In this paper we present a new method for finding closed frequent itemsets based on attribute value lattice. In the new method, we argue that vertical data representation and attribute value lattice can find all closed frequent itemsets efficiently, thus greatly improve the efficiency of association rule mining algorithm. We discuss how these techniques and methods are applied to find closed frequent itemsets. In our method, the data are represented vertically; each frequent attribute value is associated with its granule, which is represented as a hybrid bitmap. Based on the partial order defined between the attribute values among the databases, an attribute value lattice is constructed, which is much smaller compared with the original databases. Instead of searching all the items in the databases, which is adopted by almost all the association rule algorithms to find frequent itemsets, our method only searches the attribute-value lattice. A bottom-up breadth-first approach is employed to search the attribute value lattice to find the closed frequent itemsets.
منابع مشابه
Mining Closed Itemsets in Data Stream Using Formal Concept Analysis
Mining of frequent closed itemsets has been shown to be more efficient thanmining frequent itemsets for generating non-redundant association rules. The task is challenging in data stream environment because of the unbounded nature and no-second-look characteristics. In this paper, we propose an algorithm, CLICI, for mining all recent closed itemsets in landmark window model of online data strea...
متن کاملMining Top-k Frequent Closed Itemsets in Data Streams Using Sliding Window
Frequent itemset mining has become a popular research area in data mining community since the last few years. There are two main technical hitches while finding frequent itemsets. First, to provide an appropriate minimum support value to start and user need to tune this minimum support value by running the algorithm again and again. Secondly, generated frequent itemsets are mostly numerous and ...
متن کاملUsing a Reinforced Concept Lattice to Incrementally Mine Association Rules from Closed Itemsets
In the Data Mining area, discovering association rules is one of the most important task. It is well known that the number of these rules rapidly grows to be unwieldy as the frequency requirements become less strict, especially when collected data is highly correlated or dense. Since a big number of the frequent itemsets turns out to be redundant, it is sufficient to consider only the rules amo...
متن کاملFast Algorithms for Mining Generalized Frequent Patterns of Generalized Association Rules
Mining generalized frequent patterns of generalized association rules is an important process in knowledge discovery system. In this paper, we propose a new approach for efficiently mining all frequent patterns using a novel set enumeration algorithm with two types of constraints on two generalized itemset relationships, called subset-superset and ancestor-descendant constraints. We also show a...
متن کاملAccelerating Closed Frequent Itemset Mining by Elimination of Null Transactions
The mining of frequent itemsets is often challenged by the length of the patterns mined and also by the number of transactions considered for the mining process. Another acute challenge that concerns the performance of any association rule mining algorithm is the presence of „null‟ transactions. This work proposes a closed frequent itemset mining algorithm viz., Closed Frequent Itemset Mining a...
متن کامل